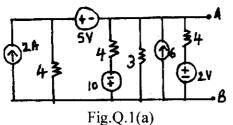
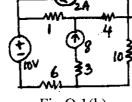


Third Semester B.E. Degree Examination, January 2013 Network Analysis


Time: 3 hrs. Max. Marks:100


Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- 1 a. Find the equivalent voltage source across AB in network shown in Fig.Q.1(a) using source transformation. (07 Marks)
 - b. Compute the power delivered to the 4Ω resistor in Fig.Q.1(b) using loop current analysis. (07 Marks)
 - c. Find V_{CD} in Fig.Q.1(c) using nodal technique.

(06 Marks)

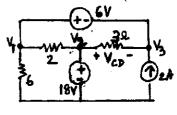


Fig.Q.1(b)

Fig.Q.1(c)

- 2 a. For the network shown in Fig.Q.2(a), draw a graph, an oriented graph, a tree, a connected graph and an unconnected graph. (04 Marks)
 - b. Obtain the dual of the circuit shown in Fig.Q.2(b) verify the results by formulating equilibrium equations. (05 Marks)
 - c. Formulate the tie-set matrix for the network shown in Fig.Q.2(c). Use 1, 2, 3 as tree branches and hence list the resulting f-loops. (06 Marks)
 - d. Develop the fundamental cut-set matrix for the network shown in Fig.Q.2(d). Use 1, 3, 4 as tree branches. (05 Marks)

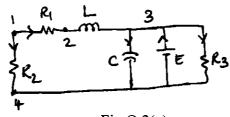
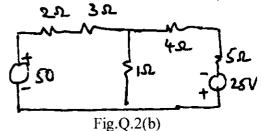
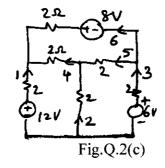
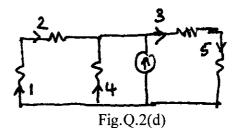
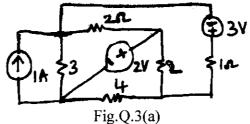





Fig.Q.2(a)

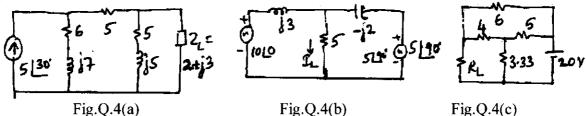


- 3 a. Using superposition theorem find the voltage 'V' across 3Ω in Fig.Q.3(a). (09 Marks)
 - b. State and explain reciprocity theorem.

(05 Marks)

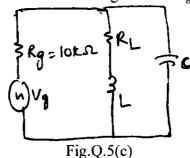
c. State and prove Millman's theorem for current sources in series.

(06 Marks)


4 a. Applying Theremin's theorem find current in 2_L in Fig.Q.4(a).

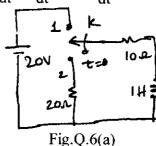
(06 Marks)

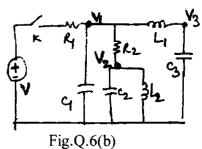
b. Find I_L in Fig.Q.4(b) using Norton's theorem.


(07 Marks)

c. What is the value of R_L for maximum power transfer in Fig.Q.4(c)? Also find the maximum power. (07 Marks)

PART - B


- 5 a. A series RLC circuit has a bandwidth of 600Hz and quality factor of 10. If the value of L is 0.05H, find the value of C. (04 Marks)
 - b. For a two branch RL-RC parallel resonant circuit, determine the expression for resonant frequency. In this circuit for L=0.4H and $C=40\mu F$, obtain resonant frequency for the following values of R_L and R_C i) $R_L=R_C=80\Omega$; ii) $R_L=100$ and $R_C=80$. (08 Marks)
 - c. Find band width of the antiresonant circuit shown in Fig.Q.5(c), with following conditions i) Q of the inductive branch = 100; ii) Frequency of unity power factor = 1MHz; iii) $L = 100 \mu H$ and iv) Internal resistance of generator $R_g = 10\Omega$. (08 Marks)

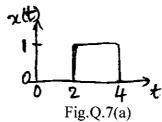


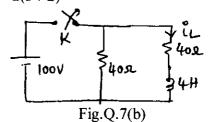
a. In the network shown in Fig.Q.6(a), the switch K is changed from position 1 to position 2 at t = 0, steady – state being established at position 1. Find: i, $\frac{di}{dt}$, $\frac{d^2i}{dt^2}$ at t = 0+. (08 Marks)

The switch K is closed at t = 0 in Fig.Q.6(b). At t = 0- all capacitor voltages and inductor currents are zero. Three node to datum voltages are identified as V1, V2 and V3. Find V1, V2,

 V_3 , $\frac{dv_1}{dt}$, $\frac{dv_2}{dt}$, $\frac{dv_3}{dt}$ and $\frac{d^2v_3}{dt^2}$ at t = 0 + ...(12 Marks)

Find the Laplace transform of x(t) shown in Fig.Q.7(a).

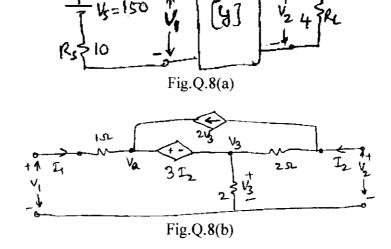

(06 Marks)


In Fig.Q.7(b), switch K is opened at t = 0, steady-state reached at t = 0. Using Laplace transform, find $I_L(s)$ and hence $i_L(t)$. Also find the value of $i_L(t)$ at t=0.5 seconds.

(10 Marks)

Find the initial and final values of f(t) when $F(s) = \frac{9s+10}{S(s+2)}$.

(04 Marks)



- Compute V_1 and V_2 in Fig.Q.8(a) with admittance matrix $[y] = \begin{bmatrix} 0.3 & -0.1 \\ -0.1 & 0.15 \end{bmatrix}$. 8 (08 Marks)
 - Obtain the open-circuit impedance parameters for the network shown in Fig.Q.8(b). b.

(08 Marks)

Obtain T-parameters in terms of z-parameters.

(04 Marks)

